УДК 338.24

DOI: 10.34670/AR.2025.24.85.045

Интеллектуальные пункты пропуска: перспективы внедрения и ключевые проблемные вопросы

Фильчакова Виктория Алексеевна

Аспирант,

Сибирский институт управления — филиал РАНХиГС, 630102, Российская Федерация, Новосибирск, ул. Нижегородская, 6; Главный государственный таможенный инспектор, Отдел по внедрению перспективных таможенных технологий, Сибирское таможенное управление, 630082, Российская Федерация, Новосибирск, ул. Тимирязева, 74; e-mail: qiki1999@mail.ru

Аннотация

Внедрение интеллектуальных пунктов пропуска на государственных границах представляет собой важный этап цифровой трансформации таможенного контроля. Использование технологий искусственного интеллекта, машинного обучения, биометрии и автоматизированных систем обработки данных позволяет значительно ускорить процедуры проверки, повысить безопасность и снизить нагрузку на персонал. В статье рассматриваются ключевые преимущества интеллектуальных пунктов пропуска, анализируются проблемные вопросы их внедрения.

Для цитирования в научных исследованиях

Фильчакова В.А. Интеллектуальные пункты пропуска: перспективы внедрения и ключевые проблемные вопросы // Экономика: вчера, сегодня, завтра. 2025. Том 15. № 7А. С. 444-454. DOI: 10.34670/AR.2025.24.85.045

Ключевые слова

Автомобильные пункты пропуска, искусственный интеллект, управление инновациями, цифровая трансформация, таможенное администрирование, зарубежный опыт, российская практика.

Введение

Интеллектуальные пункты пропуска служат ключевым элементом интеграции цифровых инноваций и технологий искусственного интеллекта в глобальном масштабе. Внедрение комплексных решений и модульных информационных систем позволяет добиться значительного роста производительности и пропускной способности при сохранении требуемых стандартов безопасности и защиты данных. Это способствует повышению уровня удовлетворенности участников внешнеэкономической деятельности, выступающих потребителями таможенных услуг.

Концепция интеллектуального пункта пропуска

Применение информационных технологий в пунктах пропуска представляет собой стратегическое направление модернизации таможенной инфраструктуры. Особую актуальность цифровизация приобретает для автомобильных пунктов пропуска, на которые приходится значительная доля трансграничных грузоперевозок.

Точкой интеграции новейших подходов цифровизации и применения различных направлений искусственного интеллекта во всем мире являются интеллектуальные пункты пропуска, обеспечивающие за счет внедрения комплексных решений, интегрированных ячеистых информационных систем взрывоподобное приращение эффективности и пропускной способности, при сохранении необходимого уровня доверия и информационной безопасности, обеспечивающих максимальную удовлетворенность участников ВЭД — потребителей таможенных услуг.

Ключевыми технологическими компонентами данной модели выступают:

- современные телекоммуникационные системы;
- интегрированные системы идентификации транспортных средств и контейнеров;
- системы видеонаблюдения;
- автоматизированные весогабаритные комплексы;
- высокопроизводительные инспекционно-досмотровые комплексы (далее ИДК);
- системы оперативного управления потоками;
- специализированное оборудование для контроля различных категорий товаров.

Новой вехой в цифровом развитии ФТС России станет создание в соответствии со Стратегией развития таможенной службы Российской Федерации до 2030 года интеллектуальных пунктов пропуска [Распоряжение № 1388-р]. В соответствии с распоряжением Минтранса России от 21 октября 2022 г. № ВС-270-р, внедрение перспективных моделей пунктов пропуска запланировано на 1 января 2027 года [Распоряжение № ВС-270-р]. При этом особо необходимо подчеркнуть, что в Послании Федеральному Собранию Российской Федерации Президентом Российской Федерации дано поручение по сокращению до 10 минут среднего времени досмотра грузового транспорта на границе.

На основе научных исследований П.Д. Афонина, А.Ю. Лебедевой и

- М.Р. Набиевой предложим схему прохождения интеллектуального автомобильного пункта пропуска, разделенную на два последовательно осуществляемых этапа контроля:
- инструментальный контроль (прохождение радиационного контроля, весогабаритного контроля, видеоаналитики, автодосмотра днища транспортного средства, проезд через портальный ИДК потокового типа), на что должно потребоваться до 3 минут;

- контроль, проводимый представителями ФТС России, ФСБ России, Россельхознадзора и Роспотребнадзора, - до 7 минут.

В итоге, поручение Президента Российской Федерации будет выполнено.

Таким образом, процесс прохождения интеллектуального автомобильного пункта пропуска можно проиллюстрировать следующим образом (рисунок 1):

Рисунок 1 — Модель интеллектуального пункта пропуска [Фильчакова, Воронин, Федоренко, 2022, 24]

Модель интеллектуального автомобильного пункта пропуска представляет собой комплексную цифровую экосистему, объединяющую передовые технологии для автоматизации таможенных процессов. В ее основе лежат системы электронного предварительного информирования и декларирования, интеллектуальные анализаторы рисков на базе искусственного интеллекта, а также автоматизированные комплексы неинвазивного контроля с использованием рентгеновских и радиолокационных сканеров.

Ключевой особенностью модели является сквозное внедрение систем автоматизации и автоматики - от дистанционной подачи декларации в электронном виде до автоматического принятия решений о выпуске товаров [Фильчакова, 2021, 241]. Интеллектуальные алгоритмы в режиме реального времени анализируют данные из множества источников, выявляя потенциальные риски и формируя «зеленые коридоры» для низкорисковых грузов [Фильчакова, 2022, 107].

Прохождение товарных партий законопослушных участников ВЭД будет происходить по принципу «зеленого коридора» с автоматическим оформлением прибытия и автоматическим помещением под таможенную процедуру таможенного транзита, при необходимости. А для товарных партий, по которым сработала система управления рисками, применяются

автоматически выбранные формы таможенного контроля с применением элементов искусственного интеллекта.

Предложенный автором порядок прохождения интеллектуального автомобильного пункта пропуска представлен на рисунке 2.

Рисунок 2 – Порядок прохождения интеллектуального пункта пропуска [составлено автором]

Поясним порядок прохождения интеллектуального автомобильного пункта пропуска, изображенный на рисунке 2.

При прибытии грузовое транспортное средство проходит инструментальный контроль, а физические лица — санитарно-карантинный контроль. На первоначальном этапе перед пунктом пропуска происходит автоматическое считывание и распознавание государственных номеров автомобильных транспортных средств.

Далее грузовые транспортные средства проходят радиационный и весогабаритный контроль, следуют через потоковый ИДК портального типа. Полученные на этапе инструментального контроля данные посредством программных средств ЕАИС ТО поступают к контрольным органам. Представители контрольных органов производят анализ и сравнивают полученные данные с поступившей предварительной информацией. Далее принимается решение о направлении транспортного средства по «зеленому» (при отсутствии выявленных рисков) или «красному» (при выявлении возможных рисков) коридору.

При принятии решения о распределении транспортного средства в «зеленый» коридор контрольные органы осуществляют совместный (одновременный) контроль, общее время осуществления которого составляет не более 7 минут.

При распределении в «красный» коридор транспортное средство направляется в бокс углубленного досмотра и проезжает мобильный или стационарный ИДК.

В деятельность таможенных органов Российской Федерации уже внедряются отдельные современные технические решения:

- 1. Интегрированная система пунктов пропуска. В рамках модернизации таможенной инфраструктуры Минтрансом России совместно
- с ФГКУ «Росгранстрой» и при участии ФТС России реализуется проект создания интегрированной системы пунктов пропуска. Данная система направлена на оптимизацию временных затрат при осуществлении процедур ввоза и вывоза товаров и транспортных средств. Разрабатываемая платформа представляет собой информационную систему для эффективной обработки данных в процессе контроля на автомобильных пунктах пропуска, являясь ключевым компонентом концепции «умного пункта пропуска» [Интеллектуальная граница, 2024, 19].
- 2. Электронная система бронирования времени подъезда. Внедрение системы предварительной записи (электронной очереди) доказало свою эффективность в решении проблемы скопления транспортных средств перед пунктами пропуска.
- 3. Модернизация инспекционного оборудования. Активно ведется оснащение пунктов пропуска портальными ИДК. На МАПП «Тагиркент-Казмаляр» и МАПП «Забайкальск» уже установлены ИДК потокового типа, позволяющие проводить сканирование транспорта без остановки и оперативно выявлять нарушения таможенного законодательства. Эффективность оборудования подтверждается показателями охвата контроля: 97% и 65% от общего транспортного потока соответственно.
- 4. Работа по развитию сервиса автоматического анализа снимков на основе искусственного интеллекта рентгеноскопических изображений, полученных с использованием ИДК. Искусственный интеллект в режиме реального времени определяет товары, отображаемые на рентгеноскопическом изображении, а также подсвечивает подозрительные зоны не только в грузовом отсеке, но и в водительской кабине и технических отсеках грузового транспортного средства, например, в топливных баках и инструментальных ящиках.

На текущий момент реализован следующий функционал сервиса:

- автоматизированная идентификация товаров (распознавание 166 товарных категорий, обнаружение опасных веществ и предметов);
- анализ рентгеновских изображений (автоматическое определение аномалий и неоднородностей на снимках ИДК);
- формирование базы данных для машинного обучения (создание обучающей выборки для интеллектуальных алгоритмов, наличие в библиотеке ФТС России для обучения нейросетей более 400 000 эталонных изображений).

Данная технология признана одним из наиболее эффективных направлений модернизации таможенного контроля. Статистика использования показывает, что ежегодный объем обработки превышает 1 млн снимков, средняя нагрузка на оператора - до 90 снимков за смену, а временные затраты на анализ одного изображения составляют около 8 минут.

5. С декабря 2022 года осуществляется тестирование новой методики досмотра с использованием ИДК, которая включает электронный документооборот и раздельный процесс сканирования и анализа изображений. Данный подход позволил сократить время осмотра в морских пунктах до 4 часов, продолжительность процедур в автомобильных пунктах до 40 минут.

Полный отказ от человеческого фактора в пунктах пропуска в пользу автоматики невозможен, но и исключительно «ручная» работа должностных лиц таможенных органов устарела. Рассмотрим наглядно, как можно эффективно совместить людей и технологии для повышения эффективности функционирования автомобильных пунктов пропуска, и представим полученные результаты в виде таблицы (таблица 1).

Таблица 1 – Способы совмещения людей и технологий для повышения эффективности пунктов пропуска

Ключевые задачи, где необходимо взаимодействие человека и технологий	Технологии	Роль человека
Документальный контроль	Сканирование паспортов и автоматическая проверка по базам данных (Interpol, национальные розыскные системы)	Анализ спорных случаев (например, поврежденные документы, нестандартные ситуации)
	Распознавание лиц (Face Recognition) для сверки с фотографией в документе	Принятие решений при неоднозначных результатах автоматической проверки
	Электронные декларации (предварительная подача данных для ускорения процесса)	
Досмотр грузов и багажа	Рентген-сканеры с искусственным интеллектом (автоматическое обнаружение оружия, наркотиков, запрещенных веществ)	Физический досмотр при срабатывании автоматической системы
	Детекторы взрывчатых веществ и химических соединений	Случайные выборочные проверки для предотвращения предсказуемости
Управление очередями и потоками	Системы видеонаблюдения с аналитикой потока людей	Корректировка логистики в нештатных ситуациях (например, задержки рейсов)
	Электронные табло с динамическим распределением очередей	Помощь маломобильным группам населения
Принятие решений в нестандартных сигуациях	Базы данных с историей нарушителей	Окончательное решение о задержании, досмотре или пропуске
	Системы поддержки принятия решений (DSS) на основе анализа рисков	Работа с конфликтными сигуациями (например, спорные вопросы визового режима)

Источник: составлено автором.

В России и большинстве стран Евразийского экономического союза (далее – ЕАЭС) внедрение искусственного интеллекта на уровне автоматических систем носит точечный характер, сосредоточившись преимущественно на системах распознавания изображений и компьютерного зрения для досмотровых операций [Лисица, 2024, 42].

Рассмотрим направления применения искусственного интеллекта для осуществления трансграничного контроля в России и зарубежных странах (таблица 2).

Таблица 2 — Направления применения искусственного интеллекта для осуществления трансграничного контроля в России и зарубежных странах

Области трансграничного контроля	Направления применения искусственного интеллекта	Страна
Фактический	сканирование транспортных средств	Россия, Китай, США,
контроль	(нейросетевой анализ изображений через	Финляндия, Эстония,
	портальные ИДК)	Турция, Япония,
		Австралия
	сканирование багажа физических лиц (в	Китай, Австралия
	интроскопах)	
	сканирование МПО и экспресс-грузов	Финляндия, Эстония,
		Турция, Австралия,
		кинопК
	идентификация транспортных	Китай, США, Латвия
	средств/номерных знаков	
	распознавание лиц пассажиров	Австралия, Япония,
	(автоматическая верификация)	страны Европейского
		союза
	предсказание нарушений границы	США, Канада
	(криминальная статистика)	
Документальный	анализ данных биометрического паспорта	США, Австралия, Япония
контроль	(автоматический паспортный контроль)	
	роботы-пограничники с элементами	OAЭ
	искусственного интеллекта	
	анализ цифровых следов для выявления	Страны Европейского
	фальшивых документов	союза

Источник: составлено автором по данным [Лебедева, Афонин, Терехова, 2023, 77]

Современные тенденции цифровизации таможенных процессов стимулируют активное внедрение искусственного интеллекта в работу пунктов пропуска по всему миру. Зарубежный опыт демонстрирует, что технологии искусственного интеллекта способны кардинально трансформировать традиционные системы контроля, обеспечивая беспрецедентную скорость обработки данных, точность таможенного администрирования и повышение уровня безопасности.

Таким образом, чем выше уровень внедрения систем автоматики и автоматизации технологических процессов (искусственный интеллект, сканеры, электронное декларирование), тем быстрее проходит таможенное оформление. Наиболее эффективные интеллектуальные пункты пропуска в Сингапуре, Китае и ЕС (скорость обработки до 10-15 минут). Самыми загруженными являются пункты пропуска на границе Россия–Китай, Польша–Беларусь, США–Мексика.

Преимущества интеллектуальных пунктов пропуска и проблемные вопросы их внедрения

Преимущества интеллектуальных пунктов пропуска над традиционными для трансграничных регионов включают:

- повышенная скорость обработки данных: сокращение времени прохождения границы для легальных грузов и пассажиров;

- усиление безопасности: автоматическое выявление нарушителей с помощью компьютеризированными системами аналитики;

- снижение коррупционных рисков: минимизация человеческого фактора за счет автоматических процессов;
- более высокий уровень интеграции с международными системами (например, с Европейской системой управления рисками в таможне – TRACES);
- более интенсивное стимулирование экономики за счет упрощения трансграничной торговли и логистики.

В исследовании «Анализ механизмов работы интеллектуального пункта пропуска. Зарубежный опыт» Сорокина А.Ю. и Лазарева А.А. рассматривают ключевые вызовы цифровой трансформации таможенных служб.

Авторы выделяют шесть основных проблем, выявленных таможенными администрациями различных государств (рисунок 3).

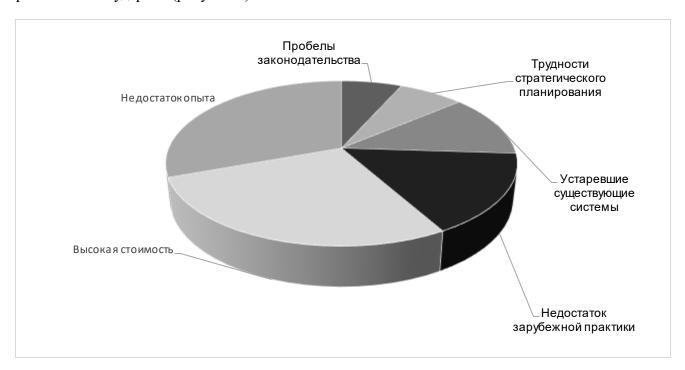


Рисунок 3 – Проблемы внедрения цифровых технологий [Сорокина, Лазарева, 2023, 75]

Как показано на рисунке 3, наиболее значимыми препятствиями стали:

- нехватка практического опыта (отмечена в 60 странах);
- высокая стоимость технологических решений (зафиксирована в 54 странах);
- дефицит успешных зарубежных кейсов, замедляющий развитие таможенных служб.

Отдельного внимания заслуживает проблема морального устаревания существующих систем, что ставит под угрозу такие принципы таможенной деятельности, как единообразие, прозрачность и оперативность [Сорокина, Лазарева, 2023, 74-75]. Кроме того, исследователи акцентируют необходимость кадровой реформы, включающей как переподготовку персонала, так и оптимизацию штатного расписания, что требует существенных временных и финансовых ресурсов.

Оценка эффективности автомобильных пунктов пропуска включает анализ ключевых показателей, таких как скорость обработки транспортных средств, точность автоматического распознавания данных и уровень интеграции цифровых систем.

Использование технологий искусственного интеллекта, компьютерного зрения и блокчейна позволяет сократить время простоя, минимизировать человеческий фактор и повысить прозрачность таможенных операций. Эффективность оценивается путем сравнения производительности до и после внедрения интеллектуальных решений, а также через анализ экономии затрат на персонал и снижения количества ошибок при оформлении.

Дополнительно учитывается влияние системы на логистические процессы, включая сокращение очередей, оптимизацию маршругов движения грузов и улучшение взаимодействия с другими государственными информационными системами. Важным аспектом является масштабируемость и адаптивность решений к изменяющимся нагрузкам и новым регуляторным требованиям. Итоговая оценка должна отражать не только прямую экономическую выгоду, но и долгосрочные эффекты, такие как повышение инвестиционной привлекательности транспортного коридора и усиление безопасности границ.

Заключение

Таким образом, интеллектуальные пункты пропуска — это неизбежное будущее трансграничного контроля. Несмотря на технологические и регуляторные сложности, их преимущества (скорость, безопасность, снижение коррупции) делают их ключевым элементом цифровизации границ. Успех зависит от международной кооперации и инвестиций в ИИ-инфраструктуру.

Дальнейшее развитие информационных технологий в пунктах пропуска будет способствовать созданию более прозрачной, безопасной и удобной системы трансграничного перемещения товаров, что соответствует глобальным тенденциям цифровой экономики и стратегическим целям таможенных служб. Приоритетом дальнейшей деятельности ФТС России является превращение таможенного администрирования в быстрый и высокотехнологичный процесс, основанный на применении инновационных подходов и перспективных информационных технологий.

Библиография

- 1. Распоряжение Правительства РФ от 23 мая 2020 г. № 1388-р «Стратегия развития таможенной службы Российской Федерации до 2030 года» // Собрание законодательства РФ. 2020. № 22. ст. 3572.
- 2. Распоряжение Минтранса России от 21 октября 2022 г. № ВС-270-р «О перспективных моделях автомобильного, морского, железнодорожного и воздушного пунктов пропуска через государственную границу Российской Федерации, используемых в качестве стандарта при строительстве, реконструкции, оборудовании и техническом оснащении зданий, помещений и сооружений, необходимых для организации пограничного, таможенного и иных видов контроля, осуществляемого в пунктах пропуска через государственную границу Российской Федерации» // Официальный сайт правовой информации. Режим доступа: https://pravo.gov.ru (дата обращения: 11.03.2025 г.). Текст: электронный.
- 3. Интеллектуальная граница // Официальный журнал ФТС России «Таможня». 2024. № 1 (475). С. 18-19.
- 4. Лебедева, А.Ю. Управление инновациями в экономике на примере интеллектуального пункта пропуска / А.Ю. Лебедева, П.Н. Афонин, Е.А. Терехова // Эффективное обеспечение научно-технического прогресса: исследование задач и поиск решений: сборник статей по итогам Международной научно-практической конференции, Киров, 27 августа 2023 года. Стерлитамак: Общество с ограниченной ответственностью «Агентство международных исследований». 2023. С. 75-80. EDN: BCEJJH.
- 5. Лисица, А.А. Зарубежный опыт организации инфраструктуры интеллектуального пункта пропуска / А.А. Лисица // Ученые записки Санкт-Петербуржского имени В.Б. Бобкова филиала Российской таможенной академии. 2024. № 2 (90). С. 41-44. EDN: ZVNEXY.
- 6. Сорокина, А.Ю. Анализ механизмов работы интеллектуального пункта пропуска. Зарубежный опыт / А.Ю. Сорокина, А.А. Лазарева // Интеллектуальный пункт пропуска в России и мире: компетентностный подход к созданию (IBCP'23). 2023. С. 75-76. EDN: XIGWVA.

7. Фильчакова, В.А. Использование технологий искусственного интеллекта в таможенных органах России / В.А. Фильчакова, С.Е. Воронин // Актуальные вопросы государственного регулирования внешнеэкономической деятельности: отечественный и зарубежный опыт: Материалы II Всероссийской студенческой научнопрактической конференции с международным участием, Новосибирск, 2–3 марта 2022 года. – Новосибирск: Сибирский государственный университет путей сообщения. – 2022. – С. 105-108.

- 8. Фильчакова, В.А. Применение информационных технологий в работе таможенных органов / В.А. Фильчакова // Актуальные вопросы государственного регулирования внешнеэкономической деятельности: отечественный и зарубежный опыт: Материалы I Всероссийской студенческой научно-практической конференции с международным участием, Новосибирск, 04—05 марта 2021 года. Новосибирск: Сибирский государственный университет путей сообщения. 2021. С. 240-244. EDN: TPUZCX.
- 9. Фильчакова, В.А. Трансформация электронной таможни в интеллектуальную / В.А. Фильчакова, С.Е. Воронин, К.П. Федоренко // Таможенное регулирование. Таможенный контроль. 2022. № 9. С. 19-27. EDN: PYXCWQ.

Smart Border Checkpoints: Implementation Prospects and Key Problematic Issues

Viktoriya A. Fil'chakova

Graduate Student,
Siberian Institute of Management - Branch of RANEPA,
630102, 6, Nizhegorodskaya str., Novosibirsk, Russian Federation;
Chief State Customs Inspector,
Department for Implementation of Advanced Customs Technologies,
Siberian Customs Administration,
630082, 74, Timiryazeva str., Novosibirsk, Russian Federation;
e-mail: qiki1999@mail.ru

Abstract

The implementation of smart border checkpoints at state borders represents an important stage in the digital transformation of customs control. The use of artificial intelligence technologies, machine learning, biometrics, and automated data processing systems can significantly accelerate inspection procedures, enhance security, and reduce the workload on personnel. The article examines the key advantages of smart border checkpoints and analyzes the problematic issues of their implementation.

For citation

Fil'chakova V.A. (2025) Intellektual'nyye punkty propuska: perspektivy vnedreniya i klyuchevyye problemnyye voprosy [Smart Border Checkpoints: Implementation Prospects and Key Problematic Issues]. *Ekonomika: vchera, segodnya, zavtra* [Economics: Yesterday, Today and Tomorrow], 15 (7A), pp. 444-454. DOI: 10.34670/AR.2025.24.85.045

Keywords

Vehicle checkpoints, artificial intelligence, innovation management, digital transformation, customs administration, foreign experience, Russian practice.

References

- Order of the Government of the Russian Federation of May 23, 2020 No. 1388-r "Strategy for the Development of the Customs Service of the Russian Federation through 2030" // Collected Legislation of the Russian Federation. 2020. -No. 22. - Art. 3572.
- 2. Order of the Ministry of Transport of Russia dated October 21, 2022 No. BC-270-p "On promising models of automobile, sea, railway and air checkpoints across the state border of the Russian Federation, used as a standard in the construction, reconstruction, equipment and technical equipment of buildings, premises and structures necessary for organizing border, customs and other types of control carried out at checkpoints across the state border of the Russian Federation" // Official website of legal information. Access mode: https://pravo.gov.ru (date of access: 11.03.2025). Text: electronic.
- 3. Intelligent Border // Official Journal of the Federal Customs Service of Russia "Customs". 2024. No. 1 (475). P. 18-19.
- 4. Lebedeva, A. Yu. Innovation management in the economy on the example of an intelligent checkpoint / A. Yu. Lebedeva, P. N. Afonin, E. A. Terekhova // Effective support of scientific and technological progress: research of problems and search for solutions: collection of articles following the results of the International scientific and practical conference, Kirov, August 27, 2023. Sterlitamak: Limited Liability Company "Agency for International Research". 2023. P. 75-80. EDN: BCEJJH.
- 5. Lisitsa, A. A. Foreign experience in organizing the infrastructure of an intelligent checkpoint / A. A. Lisitsa // Scientific notes of the V. B. Bobkov St. Petersburg branch of the Russian Customs Academy. 2024. No. 2 (90). pp. 41-44. EDN: ZVNEXY.
- Sorokina, A. Yu. Analysis of the mechanisms of the intelligent checkpoint. Foreign experience / A. Yu. Sorokina, A. A. Lazareva // Intelligent checkpoint in Russia and the world: competence-based approach to creation (IBCP'23). 2023. P. 75-76. EDN: XIGWVA.
- 7. Fil'chakova, V.A. Use of artificial intelligence technologies in the customs authorities of Russia / V.A. Fil'chakova, S.E. Voronin // Current issues of state regulation of foreign economic activity: domestic and foreign experience: Proceedings of the II All-Russian student scientific and practical conference with international participation, Novosibirsk, March 2-3, 2022. Novosibirsk: Siberian State Transport University. 2022. P. 105-108.
- 8. Fil'chakova, V. A. Application of information technologies in the work of customs authorities / V. A. Fil'chakova // Current issues of state regulation of foreign economic activity: domestic and foreign experience: Proceedings of the I All-Russian student scientific and practical conference with international participation, Novosibirsk, March 04–05, 2021. Novosibirsk: Siberian State Transport University. 2021. P. 240-244. EDN: TPUZCX.
- 9. Fil'chakova, V. A. Transformation of electronic customs into intelligent / V. A. Fil'chakova, S. E. Voronin, K. P. Fedorenko // Customs regulation. Customs control. 2022. No. 9. P. 19-27. EDN: PYXCWQ.