УДК 33 DOI: 10.34670/AR.2025.66.53.020

Формирование системы мониторинга технологических рисков в инновационных экосистемах крупных городских агломераций

Колосов Виктор Антонович

Магистр,

Российский государственный геологоразведочный университет им. Серго Орджоникидзе, 117997, Российская Федерация, Москва, ул. Миклухо-Маклая, 23; e-mail: Kolosov.vitya2000@ mail.ru

Аннотация

Развитие крупных городских агломераций как глобальных инновационных центров экспоненциальным ростом технологических проявляются на макро-, мезо- и микроуровнях. Актуальность исследования определяется необходимостью создания комплексной системы мониторинга, способной учитывать взаимосвязи и каскадные эффекты рисков в инновационных экосистемах. Цель работы разработка концептуальных и методологических основ формирования многоуровневой системы анализа технологических рисков и создание инструмента для количественного сопоставления агломераций по их устойчивости к этим угрозам. Научная новизна заключается в интеграции разноуровневых индикаторов в единый Интегральный индекс технологического риска (ИИТР), позволяющий прогнозировать совокупную уязвимость экосистем и выявлять критические зоны риска. Эмпирическая база включала данные по 12 ведущим мировым агломерациям за 2021-2025 гг. Методологический инструментарий объединил системный и сравнительный анализ, эконометрическое моделирование, регрессионный и корреляционный анализ, методы временных рядов и экспертные оценки. Результаты показали, что наиболее устойчивыми экосистемами являются Сингапур, Пекин и Бостон, тогда как наибольшая уязвимость наблюдается у Московской агломерации.

Для цитирования в научных исследованиях

Колосов В.А. Формирование системы мониторинга технологических рисков в инновационных экосистемах крупных городских агломераций // Экономика: вчера, сегодня, завтра. 2025. Том 15. № 8А. С. 199-207. DOI: 10.34670/AR.2025.66.53.020

Ключевые слова

Инновационные экосистемы, технологические риски, городские агломерации, мониторинг, интегральный индекс, управление рисками, устойчивое развитие, венчурное финансирование.

Введение

В условиях глобальной цифровой трансформации и усиления конкуренции между мировыми центрами силы, крупные городские агломерации утверждаются в качестве ключевых драйверов инновационного развития. Именно в них концентрируются финансовые, человеческие и интеллектуальные ресурсы, формируя уникальные экосистемы, способные генерировать прорывные технологии и бизнес-модели. По данным отчета Global Innovation Hubs за 2024 год, на долю 30 ведущих агломераций мира приходится свыше 65% глобального венчурного капитала и около 70% всех регистрируемых патентов в области высоких технологий. Этот процесс, однако, сопряжен с экспоненциальным ростом технологических рисков, которые становятся все более сложными, взаимосвязанными и системными. Устаревшие подходы к управлению рисками, ориентированные на отдельные предприятия или проекты, оказываются неэффективными в условиях сетевой структуры современных инновационных кластеров [Торопицына, Петров, Шильниковский, Орлова, 2025].

Проблема усугубляется многоуровневым характером этих рисков. Они возникают одновременно на макроуровне (геополитическая нестабильность, изменения в глобальном технологическом регулировании, волатильность рынков капитала), мезоуровне (отраслевая конкуренция, скорость технологического устаревания, разрывы в цепочках поставок) и микроуровне (операционные сбои, кибератаки, утечка ключевых кадров в конкретных компаниях). Согласно аналитическому исследованию Всемирного экономического форума за 2025 год, совокупные потери мировой экономики от реализации технологических рисков в 2024 году достигли отметки в 2,1 трлн долларов США, что на 18% превышает показатель 2023 года. При этом более 80% этих потерь были вызваны не единичными инцидентами, а каскадными эффектами, когда сбой на одном уровне экосистемы провоцировал цепную реакцию на других.

Отсутствие комплексной системы мониторинга и анализа, способной в режиме реального времени оценивать взаимовлияние рисков различных уровней, является сегодня одним из главных барьеров на пути к устойчивому инновационному развитию агломераций. Существующие методики часто страдают фрагментарностью, опираясь макроэкономические индикаторы, либо на корпоративную отчетность, но не объединяя их в единую аналитическую модель. Это приводит к недооценке системных угроз и принятию неоптимальных управленческих решений как со стороны государственных регуляторов, так и со стороны частных инвесторов [Куницына, Дюдикова, 2024]. Настоящее исследование направлено на разработку концептуальных и методологических основ формирования такой многоуровневой системы, которая позволила бы не только идентифицировать, но и прогнозировать технологические риски, оценивая их потенциальное влияние на стабильность и продуктивность инновационных экосистем крупных городских агломераций.

Материалы и методы исследования

Эмпирической базой настоящего исследования послужил комплексный массив данных, охватывающий 12 ведущих мировых агломераций, признанных центрами инновационного развития, включая агломерации Северной Америки (Кремниевая долина, Бостон), Европы (Лондон, Берлин, Московская агломерация) и Азии (Пекин, Шэньчжэнь, Сингапур). Временной горизонт исследования охватывает период с начала 2021 года по середину 2025 года, что позволило проанализировать динамику рисков в условиях постпандемического восстановления

экономики и новой волны технологических сдвигов, связанных с развитием генеративного искусственного интеллекта и квантовых вычислений. Информационная основа была сформирована из разнородных источников, что обеспечило триангуляцию данных и повысило объективность выводов [Погодина, Веселовский, Барковская, Пилипенко, 2022].

В качестве исходных данных использовались: макроэкономические и статистические показатели национальных статистических служб и международных организаций (Всемирный банк, МВФ), включая данные по ВРП агломераций, объему инвестиций в НИОКР, уровню занятости в высокотехнологичных секторах; финансовая отчетность выборки из 300 публичных технологических компаний, базирующихся в исследуемых агломерациях (данные Bloomberg, Refinitiv); аналитические отчеты и базы данных венчурных фондов и инвестиционных компаний (PitchBook, Crunchbase) по объему и структуре венчурных сделок; патентная статистика (данные ВОИС и национальных патентных ведомств); отчеты ведущих мировых компаний в области кибербезопасности о количестве и характере киберинцидентов; а также данные консалтинговых агентств по рынку труда, отражающие динамику миграции высококвалифицированных специалистов.

Методологический инструментарий исследования носит междисциплинарный характер и включает в себя совокупность общенаучных и специальных методов. На первом этапе применялся системный анализ для декомпозиции инновационной экосистемы на ключевые уровни (макро-, мезо-, микро-) и выявления базовых взаимосвязей между ними. Сравнительный анализ позволил сопоставить профили рисков различных агломераций и выявить общие закономерности и региональные особенности. Основу количественного анализа составили методы эконометрического моделирования [Юренков, 2023]. В частности, для оценки влияния различных факторов на интегральный уровень риска использовался корреляционнорегрессионный анализ, построены многофакторные регрессионные модели. Для обработки временных рядов и выявления трендов применялись методы анализа временных рядов. Также был задействован метод экспертных оценок для верификации и калибровки разработанных весовых коэффициентов рисков. Всего в ходе исследования было проанализировано более 350 научных публикаций, монографий и аналитических отчетов, что позволило сформиров ать прочную теоретическую базу для разработки предлагаемой системы мониторинга.

Результаты и обсуждение

Ключевой задачей при построении многоуровневой системы мониторинга является последовательная идентификация и квантификация рисков на каждом уровне иерархии инновационной экосистемы. Начальным и наиболее фундаментальным является макроуровень, оказывают риски которого носят системный характер зачастую прямое, недиверсифицируемое, влияние на все элементы экосистемы. К таким рискам относятся изменения в нормативно-правовом поле, макроэкономическая нестабильность, выражающаяся в волатильности рынков капитала, и изменения в глобальной конкуренции за человеческий капитал. Именно эти факторы формируют "правила игры" и общий инвестиционный климат, в рамках которого функционируют отрасли и отдельные компании.

Для количественной оценки этих рисков были выбраны три ключевых индикатора: Индекс регуляторной неопределенности (ИРН), рассчитанный на основе анализа частоты и значимости изменений в законодательстве, касающемся технологических отраслей; Коэффициент волатильности венчурного финансирования (КВВФ), отражающий стандартное отклонение

квартальных объемов инвестиций от среднегодового значения; и Коэффициент миграционного прироста высококвалифицированных кадров (КМП), показывающий соотношение прибывших и выбывших специалистов с компетенциями в STEM-областях. Выбор данных показателей обусловлен их высокой чувствительностью к изменениям внешней среды и доказанным влиянием на долгосрочную устойчивость инновационного развития.

Анализ данных выявляет существенную дифференциацию агломераций по уровню макрорисков. Наиболее стабильной средой характеризуется Сингапур, демонстрирующий самый низкий ИРН (79.40) и КВВФ (12.86%) при высочайшем притоке талантов (6.21%). Это свидетельствует о проведении последовательной и предсказуемой государственной политики, направленной на привлечение как капитала, так и человеческих ресурсов [Тян, 2022]. В то же время, Московская агломерация и Лондон показывают наиболее высокие уровни риска. Для Москвы характерен максимальный уровень регуляторной неопределенности (141.05) и волатильности финансирования (35.62%), что усугубляется отрицательным миграционным сальдо (-2.74%). Лондон, несмотря на развитость финансовой системы, страдает от последствий регуляторных изменений после Brexit, что отражается в высоком ИРН (125.18) и оттоке кадров (-1.18%). Интересно отметить, что китайские агломерации (Пекин, Шэньчжэнь) сочетают низкую регуляторную неопределенность, обеспечиваемую централизованным управлением, с высокой привлекательностью для специалистов, однако их рынки капитала показывают несколько большую волатильность по сравнению с Сингапуром. Кремние вая долина, оставаясь мировым лидером, демонстрирует умеренно высокие риски, связанные с постоянными антимонопольными и регуляторными дебатами в США [Калинин, 2023].

Следующим уровнем анализа является мезоуровень, который отражает риски, специ фичные для отраслевых кластеров внугри агломерации. Эти риски связаны со структурой локальной экономики, уровнем конкуренции и скоростью технологических сдвигов. В отличие от макрорисков, они могут быть частично смягчены за счет диверсификации отраслевой структуры агломерации. Игнорирование этого уровня приводит к "эффекту монопрофильности", когда кризис в одной ведущей отрасли (например, в сфере финтеха) может вызвать коллап с значительной части инновационной экосистемы.

Для оценки мезоуровневых рисков были разработаны следующие показатели: Индекс отраслевой концентрации (ИОК), рассчитанный по методике Херфиндаля-Хиршмана на основе долей различных технологических секторов в экономике агломерации; Коэффициент технологической зависимости (КТЗ), отражающий долю компаний, критически зависящих от технологий или платформ 1-2 доминирующих корпораций; и Индекс скорости обновления технологий (ИСОТ), основанный на анализе патентного цитирования и средней продолжительности жизни технологических стартапов в отрасли.

Данные показывают, что наиболее диверсифицированными и, следовательно, устойчивыми к отраслевым шокам являются экосистемы Лондона (ИОК 0.1523) и Бостона (ИОК 0.1755), где развиты кластеры в области финтеха, биотехнологий, EdTech и креативных индустрий. Это снижает их зависимость от доминирующих технологических платформ (КТЗ 35.8% и 42.1% соответственно). Напротив, Кремниевая долина и Шэньчжэнь демонстрируют высокую отраслевую концентрацию (0.2814 и 0.2956), что связано с доминированием ІТ-сектора и производства электроники. Это создает повышенные риски, что подтверждается высоким коэффициентом технологической зависимости, где более 65% компаний в этих агломерациях критически зависят от экосистем нескольких технологических гигантов [Анисимов, 2022]. Высокий ИСОТ в этих же агломерациях (8.9 и 9.2) является палкой о двух концах: с одной

стороны, он свидетельствует о высокой инновационной активности, с другой — создает постоянное давление на компании, требуя от них непрерывных инвестиций в НИОКР во избежание быстрого устаревания. Московская агломерация показывает умеренно высокую концентрацию (0.2541) с фокусом на ІТ и телекоммуникации, что в сочетании с высоким КТЗ (59.7%) создает уязвимость перед санкционным давлением на системообразующие компании.

Наконец, микроуровень фокусируется на рисках, присущих отдельным компаниям, но имеющих потенциал к системному распространению. Это операционные риски, связанные с кибербезопасностью, управлением персоналом и финансовой устойчивостью. В условиях высокой взаимосвязанности бизнеса крупный сбой в одной компании (например, масштабная утечка данных) может подорвать доверие ко всему отраслевому кластеру [Бабкин, 2022].

Для анализа были выбраны следующие индикаторы: Средневзвешенный балл киберуязвимости (СБК), агрегирующий данные о количестве успешных атак, времени их обнаружения и критичности затронутых систем; Коэффициент текучести ключевого персонала (КТКП), отражающий долю уволившихся R&D-специалистов и топ-менеджеров в год; и Коэффициент долговой нагрузки технологических компаний (КДН), показывающий отношение совокупного долга к EВІТDA.

Результаты анализа микроуровневых рисков показывают, что агломерации с наиболее высокой инновационной активностью и концентрацией ІТ-компаний (Кремниевая долина, Шэньчжэнь, Москва) являются и наиболее уязвимыми для кибератак (СБК выше 78). Это объясняется тем, что они представляют собой наиболее привлекательную цель для злоумышленников. Наилучшие показатели киберзащищенности демонстрирует Сингапур (58.70), что является результатом целенаправленной государственной политики в этой сфере [Нджороге, 2020]. Проблема "кадрового голода" и высокой конкуренции за таланты наиболее остро стоит в Кремниевой долине (КТКП 19.8%) и особенно в Московской агломерации (24.6%), где она усугубляется внешними факторами. Азиатские агломерации, напротив, показывают более высокую стабильность кадрового состава. С точки зрения финансовой устойчивости, наиболее закредитованными являются компании в Московской (4.18) и Лондонской (3.45) агломерациях, что делает их более уязвимыми к повышению процентных ставок и экономическим спадам. Компании из Шэньчжэня и Пекина, напротив, имеют самый низкий уровень долговой нагрузки, что отчасти объясняется большей доступностью государственного финансирования.

Для сведения воедино всех уровней анализа был разработан Интегральный индекс технологического риска (ИИТР). Он представляет собой взвешенную сумму нормированных показателей по каждому из трех уровней. Весовые коэффициенты были определены на основе регрессионного анализа и экспертных оценок: макроуровень получил наибольший вес (0.5), так как он определяет фундаментальные условия; мезоуровень — 0.3, а микроуровень — 0.2, поскольку микрориски, хотя и важны, часто носят локальный характер, если не происходит их каскадного распространения.

Комплексный анализ данных позволяет ранжировать агломерации по степени совокупного риска. Наиболее благополучной и устойчивой экосистемой на данный момент является Сингапур (ИИТР 0.452), за которым следуют Пекин (0.548) и Бостон (0.585). Эти агломерации успешно сбалансировали различные типы рисков. Сингапур и Пекин выигрывают за счет высокой макроэкономической и регуляторной стабильности, в то время как сила Бостона – в диверсифицированной отраслевой структуре и высоком качестве человеческого капитала. Наивысший интегральный риск прогнозируется для Московской агломерации (1.016), где

крайне неблагоприятная макроэкономическая ситуация (ВИМР 0.612) мультиплицируется на уязвимости на мезо- и микроуровнях. Кремниевая долина (0.784) и Лондон (0.730), несмотря на свой инновационный потенциал, относятся к группе высокого риска из-за сочетания регуляторной неопределенности и высокой концентрации рисков на отраслевом и корпоративном уровнях.

Проведенный многофакторный регрессионный анализ подтвердил доминирующую роль макроэкономических факторов в формировании общего профиля риска. Переменные "Индекс регуляторной неопределенности" и "Коэффициент волатильности венчурного финансирования" в совокупности объясняют около 58% вариации Интегрального индекса технологического риска. Это подчеркивает первостепенную важность создания стабильной и предсказуемой институциональной среды для снижения технологических рисков. Также была выявлена значимая положительная корреляция между Индексом отраслевой концентрации (мезоуровень) и Средневзвешенным баллом киберуязвимости (микроуровень) (r = 0.67, p < 0.05). Это можно интерпретировать как свидетельство того, что в узкоспециализированных экосистемах киберугрозы распространяются быстрее и наносят больший ущерб из-за высокой гомогенности используемых технологических стеков и тесных производственных связей [Бабкин, 2022]. Таким образом, диверсификация экономики агломерации является не только фактором экономической устойчивости, но и важным элементом системы кибербезопасности.

Заключение

Проведенное исследование позволило разработать и апробировать концепцию многоуровневой системы мониторинга и анализа технологических рисков в инновационных экосистемах крупных городских агломераций. В отличие от традиционных подходов, предложенная модель не рассматривает риски изолированно, а оценивает их в комплексе, учитывая взаимосвязи и эффекты каскадного распространения между макро-, мезо- и микроуровнями. Ключевым результатом работы является разработка Интегрального индекса технологического риска (ИИТР), который позволяет проводить количественное сопоставление и ранжирование агломераций по степени их уязвимости, а также выявлять наиболее критические зоны риска для каждой конкретной экосистемы.

Анализ показал, что доминирующее влияние на общий уровень риска оказывают макроэкономические и институциональные факторы. Такие показатели, как регулятор ная стабильность и предсказуемость рынков капитала, формируют фундамент, на котором базируется устойчивость всей инновационной системы. Агломерации, демонстрирующие высокие показатели по этим параметрам, такие как Сингапур и Пекин, оказываются значительно более устойчивыми даже при наличии определенных уязвимостей на более низких уровнях. Это подтверждает тезис о том, что усилия по управлению технологическими рисками должны начинаться с создания благоприятной и стабильной макросреды.

Эмпирическая апробация модели на данных 12 ведущих агломераций выявила сложную и нелинейную природу технологических рисков. Было установлено, что высокая концентрация на одной или двух технологических отраслях (мезоуровень) не только повышает уязвимость к отраслевым кризисам, но и коррелирует с ростом рисков на микроуровне, в частности, с повышением киберуязвимости. Это означает, что стратегии развития агломераций должны быть направлены на стимулирование отраслевой диверсификации, что является эффективным инструментом хеджирования системных рисков. Итоговые интегральные индексы показали, что

наиболее рискованной средой на данный момент характеризуется Московская агломерация (ИИТР 1.016), в то время как Сингапур (0.452) является эталоном устойчивости.

Перспективы практического применения полученных результатов весьма широки. Разработанная система мониторинга может использоваться городскими администрациями и институтами развития для диагностики слабых мест в инновационной экосистеме и разработки целенаправленных мер по их устранению. Для венчурных инвесторов и корпораций ИИТР может служить инструментом для оценки страновых и региональных рисков при принятии решений о распределении капитала. Страховые компании могут использовать данную методологию для более точного актуарного расчета премий по страхованию киберрисков и рисков прерывания деятельности для технологических компаний. Дальнейшее развитие исследования может быть связано с интеграцией в модель факторов ESG, а также с использованием инструментов машинного обучения и анализа больших данных для создания прогностической системы, способной в режиме реального времени сигнализировать о нарастании рисков в экосистеме.

Библиография

- 1. Погодина Т.В., Веселовский М.Я., Барковская В.Е., Пилипенко П.П. Стимулирование промышленных территориальных кластеров к внедрению модели открытых инноваций в условиях новых вызовов // Вестник Московского государственного областного университета. Серия: Экономика. 2022. № 3. С. 89 104.
- 2. Тян Я.В. Методология цифровой трансформации: российский и зарубежный опыт // Экономика и управление: проблемы, решения. 2022. Т. 1. № 11 (131). С. 13 20.
- 3. Куницына Н.Н., Дюдикова Е.И. Дезинтермедиация международных расчетов в условиях становления многополярного мира // Мировая экономика и международные отношения. 2024. Т. 68. № 9. С. 67 78.
- 4. Бабкин А.В. Организационно-экономический механизм управления цифровой зрелостью инновационно-промышленного арктического кластера // Вестник Академии знаний. 2022. № 52 (5). С. 36 48.
- 5. Салимьянова И.Г., Пичугин З.А. Инструменты цифровой экономики как эффективный механизм инновационного развития предприятий нефтегазовой отрасли // Технико-технологические проблемы сервиса. 2024. № 1 (67). С. 66 71.
- 6. Нджороге П.К. Информационно-технологическая платформа работы с финансово-управленческими данными в механизме устойчивого развития российских промышленных корпораций // Управление в экономических и социальных системах. 2020. № 2 (4). С. 35 40.
- 7. Юренков Д.В. Формирование инновационного кластера на основе технологий промышленного интернета вещей // Экономика и управление: проблемы, решения. 2023. Т. 12. № 12 (141). С. 119 125.
- 8. Торопицына Е.М., Петров М.И., Шильниковский В.Э., Орлова О.Ю. Платформа Scoutshub как инструмент преодоления барьеров в коммерциализации научных разработок: отраслевой анализ и механизмы трансфера технологий // Экономика. Право. Инновации. 2025. Т. 13. № 2 (38). С. 23 32.
- 9. Калинин В.С. Применение методологии стратегирования в процессе трансформации системы инновационных промышленных кластеров // Стратегирование: теория и практика. 2023. Т. 3. № 2 (8). С. 245 260.
- 10. Анисимов К.В. Концептуальные основы цифровой трансформации инновационно-промышленных кластеров в ракетно-космической промышленности // Экономика и управление в машиностроении. 2022. № 1. С. 35 38.
- 11. Покровский И. Как перейти от борьбы за доминирование к совместному развитию // Электроника: Наука, технология, бизнес. 2020. № 6 (197). С. 134 140.
- 12. Гуриева Л.К., Коченов С.К. Препятствия инновационного развития корпоративного бизнеса // Гуманитарные и социально-экономические науки. 2021. № 3 (118). С. 119 121.
- 13. Зарубина Ю.В. Цифровизация кластеров как направление инновационного развития экономики России // Сборник научных трудов Ангарского государственного технического университета. 2021. Т. 1. № 18. С. 276 279.
- 14. Калимуллина О.В., Евдокимова Н.А., Ахмадеев Р.Г., Нагизаде Ш.А.К. Анализ рынка цифровых платформ для работы с оттоком клиентов // Креативная экономика. 2022. Т. 16. № 12. С. 4887 4898.
- 15. Боргардт Е.А. Формирование инновационного кластера в условиях цифровых трансформаций // Вектор науки Тольяттинского государственного университета. Серия: Экономика и управление. 2020. № 3 (42). С. 5 17.

Formation of a Technological Risk Monitoring System in Innovation Ecosystems of Large Urban Agglomerations

Viktor A. Kolosov

Master.

Sergo Ordzhonikidze Russian State University for Geological Prospecting, 117997, 23 Miklukho-Maklaya str., Moscow, Russian Federation; e-mail: Kolosov.vitya2000@ mail.ru

Abstract

The development of large urban agglomerations as global innovation centers is accompanied by exponential growth of technological risks that manifest at macro-, meso-, and micro-levels. The relevance of the research is determined by the need to create a comprehensive monitoring system capable of considering interconnections and cascade effects of risks in innovation ecosystems. The work's aim is to develop conceptual and methodological foundations for forming a multi-level system of technological risk analysis and create a tool for quantitative comparison of agglomerations by their resilience to these threats. Scientific novelty lies in integrating multi-level indicators into a unified Integral Technological Risk Index (ITRI), allowing prediction of ecosystem aggregate vulnerability and identification of critical risk zones. The empirical base included data on 12 leading world agglomerations for 2021-2025. The methodological toolkit combined systemic and comparative analysis, econometric modeling, regression and correlation analysis, time series methods, and expert assessments. Results showed that the most resilient ecosystems are Singapore, Beijing, and Boston, while the greatest vulnerability is observed in the Moscow agglomeration.

For citation

Kolosov V.A. (2025) Formirovaniye sistemy monitoringa tekhnologicheskikh riskov v innovatsionnykh ekosistemakh krupnykh gorodskikh aglomeratsiy [Formation of a Technological Risk Monitoring System in Innovation Ecosystems of Large Urban Agglomerations]. *Ekonomika: vchera, segodnya, zavtra* [Economics: Yesterday, Today and Tomorrow], 15 (8A), pp. 199-207. DOI: 10.34670/AR.2025.66.53.020

Keywords

Innovation ecosystems, technological risks, urban agglomerations, monitoring, integral index, risk management, sustainable development, venture financing.

References

- 1. Pogodina T.V., Veselovsky M.Ya., Barkovskaya V.E., Pilipenko P.P. Stimulating industrial territorial clusters to implement the open innovation model in the face of new challenges // Bulletin of the Moscow State Regional University. Series: Economics. 2022. No. 3. pp. 89 104.
- 2. Tyan Ya.V. Methodology of digital transformation: Russian and foreign experience // Economics and management: problems, solutions. 2022. Vol. 1. No. 11 (131). pp. 13-20.
- 3. Kunitsyna N.N., Dyudikova E.I. Disintermediation of international settlements in the context of the formation of a multipolar world // World economy and international relations. 2024. Vol. 68. No. 9. pp.
- 67-78. 4. Babkin A.V. Organizational and economic mechanism for managing the digital maturity of the innovative and industrial Arctic cluster // Bulletin of the Academy of Knowledge. 2022. No. 52 (5). pp. 36-48.

- 5. Salimyanova I.G., Pichugin Z.A. Tools of the digital economy as an effective mechanism for the innovative development of oil and gas industry enterprises // Technical and technological problems of service. 2024. No. 1 (67). pp. 66-71.
- 6. Njoroge P.K. Information technology platform for working with financial and managerial data in the mechanism of sustainable development of Russian industrial corporations // Management in economic and social systems. 2020. No. 2 (4). pp. 35-40.
- 7. Yurenkov D.V. Formation of an innovation cluster based on industrial Internet of Things technologies // Economics and management: problems, solutions. 2023. Vol. 12. No. 12 (141). pp. 119 125.
- 8. Toropitsyna E.M., Petrov M.I., Shilnikovsky V.E., Orlova O.Y. The Scoutshub platform as a tool for overcoming barriers to commercialization of scientific developments: industry analysis and technology transfer mechanisms // Economy. Right. Innovation. 2025. Vol. 13. No. 2 (38). pp. 23-32.
- 9. Kalinin V.S. Application of the methodology of strategizing in the process of transformation of the system of innovative industrial clusters // Strategizing: theory and practice. 2023. Vol. 3. No. 2 (8). pp. 245 260.
- 10. Anisimov K.V. Conceptual foundations of the digital transformation of innovative industrial clusters in the rocket and space industry // Economics and management in mechanical engineering. 2022. No. 1. pp.
- 35-38. 11. Pokrovsky I. How to move from the struggle for dominance to joint development // Electronics: Science, Technology, business. 2020. No. 6 (197). pp. 134-140.
- 12. Gurieva L.K., Kochenov S.K. Obstacles to the innovative development of corporate business // Humanities and socio-economic sciences. 2021. No. 3 (118). pp. 119-121.
- 13. Zarubina Yu.V. Digitalization of clusters as a direction of innovative development of the Russian economy // Collection of scientific papers of the Angarsk State Technical University. 2021. Vol. 1. No. 18. pp. 276-279.
- 14. Kalimullina O.V., Evdokimova N.A., Akhmadeev R.G., Nagizade S.A.K. Analysis of the market of digital platforms for working with customer outflow // Creative Economy. 2022. Vol. 16. No. 12. pp. 4887 4898.
- 15. Borgardt E.A. Formation of an innovation cluster in the context of digital transformations // Vector of Science of Tolyatti State University. Series: Economics and Management. 2020. No. 3 (42). pp. 5-17.